<i>Name of subject:</i> Technical mechanics	<i>NEPTUN-code:</i> RKXME1EBNE	<i>Number of hours:</i> <i>lec+gs+lab</i> 2+2+0	<i>Credit:</i> 5 <i>Requirements:</i> practice mark
Course coordinator:	Title:	Prerequisite:	
Lóránt Szabó PhD	assistant lecturer	-	
Curriculum			

Our study of engineering mechanics can be divided into 4 main parts:

- 1. Statics. Basic concepts, fundamentals. Planar forces, force systems. Moment of force about a given point and axis. Planar supports. Loads on beams. Centre of gravity. Friction. Free-body, shear force and bending moment diagrams for the beams.
- **2.** Strength of Materials. Basic concepts, stress and stress states. Material Laws. Stress strain diagram. Simple strain of prismatic bars. Stress theories. Tensile, shear and torsion stresses.
- **3. Kinematics.** The kinematics of a point. Basic concepts of kinematics. Uniform and uniformly changing motion. Projectile motions, circular motion, harmonic motion, swinging motion. Kinematics of rigid body.
- **4. Kinetics.** Point kinetics. Newton's laws. Momentum, power, work. Energies (potential, kinetic). Work energy theorem. Oscillation motion. Simple pendulum. The kinetics of a rigid body. The moment of inertia, and general theorems and principles. The rotation of a rigid body around an axis. Translational and plane motion of a rigid body.

Competences to be mastered:

a) knowledge

- Knowledge of general and specific mathematical and natural scientific principles, rules, relations, and procedures as required to pursue activities in the special field of product design.

Bibliography:

1. Serway Jewett: Physics for Scientist and Engineers

2. http://www.icivil-hu.com/Civil-

team/2nd/Statics/Statics,%20R.C.%20Hibbeler,%2012th%20book.pdf

3. https://www.youtube.com/watch?v=l_M2TImYe64